Issue 12, 2018

Recent advances in anti-angiogenic nanomedicines for cancer therapy

Abstract

Angiogenesis is a normal physiological remodeling process initiated at the time of embryonic development and lessened with the progress of time. Nevertheless, continuous activation of stringent signaling pathways and proangiogenic factors during tumorigenesis (a pathological condition) instigates serious vessel abnormalities eliciting severe therapeutic inefficiency. In principle, systemic delivery of robust antiangiogenic drugs often fails to reach these abnormal tumor vessels depicting poor pharmacokinetics, biodistribution profiles and adverse side effects in vivo. Recently, the advent of nanotechnology has offered numerous advantages encompassing high drug payloads, increased blood half-life and reduced toxicity; likewise, such nanomedicines can also target the key components of the tumor microenvironment and tumor cells effectively. Synergistic targeting of malignant cells and vessel abnormalities via integration of antiangiogenic and other potent combinational regimens in a single nanoplatform can revitalize therapeutic success. In this review, we will discuss the most promising nanotechnological advancements rehabilitating angiogenesis, and emerging nanocarriers comprehending gene delivery, stem cell therapies and dynamic combinational strategies for effective anticancer therapy.

Graphical abstract: Recent advances in anti-angiogenic nanomedicines for cancer therapy

Article information

Article type
Review Article
Submitted
25 Dec 2017
Accepted
12 Feb 2018
First published
12 Feb 2018

Nanoscale, 2018,10, 5393-5423

Recent advances in anti-angiogenic nanomedicines for cancer therapy

P. Bhattarai, S. Hameed and Z. Dai, Nanoscale, 2018, 10, 5393 DOI: 10.1039/C7NR09612G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements