Issue 4, 2018

Computational characterisation of dried and hydrated graphene oxide membranes

Abstract

A multi-step molecular dynamics procedure was developed to construct fully flexible atomistic models of graphene oxide (GO) membranes. The method of preparation replicates the experimental synthesis of the material; i.e. the flow-directed self-assembly of individual flakes onto a substrate or filter. A total of 180 GO membrane models were prepared with water contents varying between 0 and 20%, providing an insight into changes in the membrane's interlayer distance with swelling. Membranes with 15% water content have an average interlayer distance (0.80 nm), bulk density (1.77 g cm−3) and tensile modulus (18.1 GPa) in excellent agreement with the experimental literature, demonstrating that air-dried membranes have 15% water content. The models reveal the intrinsic structural heterogeneity and complex morphology of GO membranes. This feature has previously been unaccounted for in both experimental interpretations and GO nanopore models, which often use pre-defined and idealised 2D geometries. Completely dried membranes have considerable free pore volume. This observation explains the modest change in interlayer distance (0.02 nm) as the membrane's water content is increased from 0% to 10% compared to a much more significant change (0.12 nm) as the water content is increased from 10% to 20%. Combined with this new understanding of membrane swelling, the availability of such representative models opens the possibility of the molecular-level design of GO membranes for a variety of applications, such as gaseous and aqueous separations.

Graphical abstract: Computational characterisation of dried and hydrated graphene oxide membranes

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2017
Accepted
28 Dec 2017
First published
29 Dec 2017

Nanoscale, 2018,10, 1946-1956

Computational characterisation of dried and hydrated graphene oxide membranes

C. D. Williams, P. Carbone and F. R. Siperstein, Nanoscale, 2018, 10, 1946 DOI: 10.1039/C7NR07612F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements