Issue 2, 2017

New insights into the stability and structural evolution of some gold nanoclusters

Abstract

Revealing the stability and structural patterns is important for precisely synthesizing or assembling ligand protected nanoclusters, and even their applications as functional nanomaterials. Investigations on structural evolutional patterns and structural stability are very challenging, because structures change with the nanocluster size and the structural stability depends on both the electron structures of cores and ligand type. Herein, we propose a hybrid superatom network (hSAN) model to understand the stability of some gold nanoclusters with different kinds of ligands. In this model, 4c-2e superatom Au4 can form conjugated superatom networks by vertex sharing, and ligands further connect the conjugated superatom networks together to form a bigger complex network, i.e. a hSAN. The stability of the clusters, including [Au24(C[triple bond, length as m-dash]CPh)14(PPh3)4]2+, Au28(S-c-C6H11)20, Au36(SCH2Ph-tBu)8Cl20, Au40(O-MBT)24 and Au52(TBBT)32 can be explained uniformly by the hSAN model. Beyond that, a new heuristic structural pattern named the Au13 topological rule is proposed. In the light of this heuristic rule, every Au7 bi-tetrahedral kernel is included in an Au13 structure with quasi-Oh symmetry, i.e. as long as the Au7 bi-tetrahedral kernel is formed, it will be surrounded by six Au atoms to form an Au13 structure topologically. According to this understanding, a new nanocluster [Au44(C[triple bond, length as m-dash]CH3)26(PCH3)4]2+ and a new nanowire with the structural evolutional formula [Au(20n+4)(C[triple bond, length as m-dash]CH3)(12n+2)(PCH3)4]2+ (n = 1, 2, 3, 4, …) are predicted. Both the understanding of the stability and the structure rule are free from the type of ligand, and will be useful for the structural predictions and determinations of ligand protected gold nanoclusters.

Graphical abstract: New insights into the stability and structural evolution of some gold nanoclusters

Article information

Article type
Paper
Submitted
07 Oct 2016
Accepted
12 Dec 2016
First published
13 Dec 2016

Nanoscale, 2017,9, 856-861

New insights into the stability and structural evolution of some gold nanoclusters

L. Liu, J. Yuan, L. Cheng and J. Yang, Nanoscale, 2017, 9, 856 DOI: 10.1039/C6NR07878H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements