Issue 47, 2016

Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant

Abstract

Printed p-type single walled carbon nanotube (SWCNT) based circuits exhibit high power dissipation owing to their thick printed dielectric layers (>2 μm) and long channels (>100 μm). In order to reduce the static power dissipation of printed SWCNT-base circuits while maintaining the same printing conditions and channel lengths, complementary metal–oxide-semiconductor (CMOS) based circuits are more ideal. These circuits, however, have not been successfully implemented in a scalable printing platform due to unstable threshold voltages of n-doped SWCNT based thin film transistors (TFTs). In this work, a thermally curable epoxy-imine-based n-doping ink is presented for achieving uniform doping and sealing of SWCNT layers by gravure printing. After printing the n-doping ink, the ink is cured to initiate a cross-linking reaction to seal the n-doped SWCNT-TFTs so that the threshold voltage of the n-doped SWCNT-TFTs is stabilized. Flexible CMOS ring oscillators using such n-doped SWCNT-TFTs combined with the intrinsically p-type SWCNT-TFTs can generate a 0.2 Hz clock signal with significantly lower power consumption compared to similarly printed p-type only TFT based ring oscillators. Moving forward, this CMOS flexible ring oscillator can be practically used to develop fully printed inexpensive wireless sensor tags.

Graphical abstract: Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2016
Accepted
11 Nov 2016
First published
11 Nov 2016

Nanoscale, 2016,8, 19876-19881

Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant

D. Kim, Y. Jung, J. Sun, C. Yeom, H. Park, D. G. Jung, Y. Ju, K. Chen, A. Javey and G. Cho, Nanoscale, 2016, 8, 19876 DOI: 10.1039/C6NR07762E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements