Jump to main content
Jump to site search

Issue 26, 2016
Previous Article Next Article

An effective way to increase the high-frequency permeability of Fe3O4 nanorods

Author affiliations

Abstract

Uniform Fe3O4 magnetic nanorods (NRs) were successfully synthesized and oriented in epoxy resin under a rotating magnetic field. Magnetic induction fields within and around a single Fe3O4 nanorod in the remanence state were obtained by off-axis electron holography. The induction fields indicated a single domain state of the highly anisotropic Fe3O4 nanorod due to its strong magnetic shape anisotropy. Quantitative magnetic moment analysis of the obtained phase image yielded an average magnetization of 0.53 T of a single Fe3O4 nanorod. Moreover, the real part of the permeability (μ′) of magnetic-oriented Fe3O4 NRs is obviously higher than that of random Fe3O4 NRs in the GHz range. The oriented Fe3O4 NRs exhibit a higher resonance peak at 4.75 GHz compared to the bulk counterpart (1.2 GHz) in the frequency dependence of μ in the range of 1–10 GHz. Moreover, the calculated μ value of the oriented Fe3O4 NRs could be improved to 4.22 with the increased dipolar interaction strength using the OOMMF software. These results could play a guiding significance in the development of an effective method to improve the permeability of magnetic nanomaterials at GHz working frequency.

Graphical abstract: An effective way to increase the high-frequency permeability of Fe3O4 nanorods

Back to tab navigation

Supplementary files

Article information


Submitted
22 Apr 2016
Accepted
28 May 2016
First published
31 May 2016

Nanoscale, 2016,8, 12910-12916
Article type
Paper

An effective way to increase the high-frequency permeability of Fe3O4 nanorods

X. Ren, H. Yang, J. Tang, Z. Li, Y. K. Su, S. Geng, J. Zhou, X. Zhang and Z. Cheng, Nanoscale, 2016, 8, 12910
DOI: 10.1039/C6NR03305A

Social activity

Search articles by author

Spotlight

Advertisements