Issue 24, 2016

Laser printing of resonant plasmonic nanovoids

Abstract

Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather time-consuming and expensive. Here, we report on direct single-step fabrication of large-scale arrays of hollow parabolic- and cone-shaped nanovoids in silver and gold thin films, using single-pulse femtosecond nanoablation at high repetition rates. The lateral and vertical size of such nanovoids was found to be laser energy-tunable. Resonant light scattering from individual nanovoids was observed in the visible spectral range, using dark-field confocal microspectroscopy, with the size-dependent resonant peak positions. These colored geometric resonances in far-field scattering were related to excitation and interference of transverse surface plasmon modes in nanovoid shells. Plasmon-mediated electromagnetic field enhancement near the nanovoids was evaluated via finite-difference time-domain calculations for their model shapes simulated by three-dimensional molecular dynamics, and experimentally verified by means of photoluminescence microscopy and Raman spectroscopy.

Graphical abstract: Laser printing of resonant plasmonic nanovoids

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2016
Accepted
10 May 2016
First published
10 May 2016

Nanoscale, 2016,8, 12352-12361

Laser printing of resonant plasmonic nanovoids

A. Kuchmizhak, O. Vitrik, Yu. Kulchin, D. Storozhenko, A. Mayor, A. Mirochnik, S. Makarov, V. Milichko, S. Kudryashov, V. Zhakhovsky and N. Inogamov, Nanoscale, 2016, 8, 12352 DOI: 10.1039/C6NR01317A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements