Issue 17, 2016

Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR–ABL hybrid oncogene in a human chronic myeloid leukemia cell line

Abstract

First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR–ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR–ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR–ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR–ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR–ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR–ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro transfection results from BCPV-siRNA, a newly developed biodegradable transfection agent, BCPV, is being probed for transfection performance in an animal model.

Graphical abstract: Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR–ABL hybrid oncogene in a human chronic myeloid leukemia cell line

Article information

Article type
Paper
Submitted
03 Feb 2016
Accepted
31 Mar 2016
First published
05 Apr 2016

Nanoscale, 2016,8, 9405-9416

Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR–ABL hybrid oncogene in a human chronic myeloid leukemia cell line

C. Yang, N. Panwar, Y. Wang, B. Zhang, M. Liu, H. Toh, H. S. Yoon, S. C. Tjin, P. H. J. Chong, W. Law, C. Chen and K. Yong, Nanoscale, 2016, 8, 9405 DOI: 10.1039/C6NR00996D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements