Issue 14, 2015

An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles

Abstract

We have developed a novel aptamer-targeting photoresponsive drug delivery system by non-covalent assembly of a Cy5.5-AS1411 aptamer conjugate on the surface of graphene oxide wrapped doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSN-Dox@GO-Apt) for light-mediated drug release and aptamer-targeted cancer therapy. The two “off–on” switches of the MSN-Dox@GO-Apt were controlled by aptamer targeting and light triggering, respectively. The Cy5.5-AS1411 ligand provides MSN-Dox@GO-Apt with nucleolin specific targeting and real-time indicator abilities by “off–on” Cy5.5 fluorescence recovery. The GO acts as a gatekeeper to prevent the loaded Dox from leaking in the absence of laser irradiation, and to control the Dox release in response to laser irradiation. When the GO wrapping falls off upon laser irradiation, the “off–on” photoresponsive drug delivery system is activated, thus inducing chemotherapy. Interestingly, with an increase in laser power, the synergism of chemotherapy and photothermal therapy in a single MSN-Dox@GO-Apt platform led to much more effective cancer cell killing than monotherapies, providing a new approach for treatment against cancer.

Graphical abstract: An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
19 Dec 2014
Accepted
24 Feb 2015
First published
02 Mar 2015

Nanoscale, 2015,7, 6304-6310

Author version available

An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles

Y. Tang, H. Hu, M. G. Zhang, J. Song, L. Nie, S. Wang, G. Niu, P. Huang, G. Lu and X. Chen, Nanoscale, 2015, 7, 6304 DOI: 10.1039/C4NR07493A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements