Issue 16, 2015

Charge transfer vs. dimensionality: what affects the transport properties of ferecrystals?

Abstract

A series of ([SnSe]1+δ)m(NbSe2)2 compounds with two layers of NbSe2 separated by m bilayers of SnSe, where 1 ≤ m ≤ 20, were prepared from modulated precursors by systematically changing the number of SnSe layers in the repeating unit. A change in the c-lattice parameter of 0.579(3) nm per SnSe bilayer was observed. The thickness of the NbSe2 layer was determined to be 1.281(4) nm: twice the value of a single NbSe2 layer. HAADF-STEM images revealed the presence of extensive rotational disorder and the lack of any epitaxial relationship among the constituent layers. Two different coordination environments for the Nb in NbSe2 (trigonal prismatic and octahedral) were observed. The electrical resistivity increases and the carrier concentration decreases in the ([SnSe]1+δ)m(NbSe2)2 compounds with increasing number of SnSe bilayers. The temperature dependence of the resistivity suggests localization of carriers for higher m values. The decline in carrier concentration as a function of m implies the presence of charge transfer from SnSe to NbSe2. The transport properties of the ([SnSe]1+δ)m(NbSe2)2 compounds and the previously reported ([SnSe]1+δ)m(NbSe2)1 compounds both have unusually temperature independent resistivity compared to bulk NbSe2. Compounds with similar m/n ratios exhibit similar transport properties. Consequently, the dominant effect on the transport properties of ([SnSe]1+δ)m(NbSe2)2 is charge transfer, and there are only subtle differences between a monolayer and a bilayer of NbSe2.

Graphical abstract: Charge transfer vs. dimensionality: what affects the transport properties of ferecrystals?

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2014
Accepted
24 Mar 2015
First published
25 Mar 2015

Nanoscale, 2015,7, 7378-7385

Author version available

Charge transfer vs. dimensionality: what affects the transport properties of ferecrystals?

M. B. Alemayehu, K. Ta, M. Falmbigl and D. C. Johnson, Nanoscale, 2015, 7, 7378 DOI: 10.1039/C4NR07338J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements