Issue 7, 2014

A back-to-back MOS–Schottky (Pt–SiO2–Si–C–Pt) nano-heterojunction device as an efficient self-powered photodetector: one step fabrication by pulsed laser deposition

Abstract

An efficient self-powered photodetector design involving a C–Si hetero-interface with back-to-back MOS–Schottky (Pt–SiO2–Si–C–Pt) device action is presented. Pulsed laser deposition of a carbon thin film is used which dynamically removes the native surface oxide to form the desired Schottky interface. The combined device action yields two orders of magnitude photoresponse at zero bias.

Graphical abstract: A back-to-back MOS–Schottky (Pt–SiO2–Si–C–Pt) nano-heterojunction device as an efficient self-powered photodetector: one step fabrication by pulsed laser deposition

Supplementary files

Article information

Article type
Communication
Submitted
09 Dec 2013
Accepted
19 Jan 2014
First published
28 Jan 2014

Nanoscale, 2014,6, 3550-3556

A back-to-back MOS–Schottky (Pt–SiO2–Si–C–Pt) nano-heterojunction device as an efficient self-powered photodetector: one step fabrication by pulsed laser deposition

P. A. Shaikh, V. P. Thakare, D. J. Late and S. Ogale, Nanoscale, 2014, 6, 3550 DOI: 10.1039/C3NR06525A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements