Jump to main content
Jump to site search

Issue 23, 2013
Previous Article Next Article

Optimized multimodal nanoplatforms for targeting αvβ3 integrins

Author affiliations


Magnetic Resonance Imaging (MRI) using contrast agents is a very powerful technique for diagnosis in clinical medicine and biomedical research. The synthesis of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles targeting αvβ3 integrins and acting as new MRI contrast agents seems to be a promising way for cancer diagnosis. Indeed, it is well established that αvβ3 integrin plays a key role in tumor angiogenesis acting like a receptor for the extracellular matrix proteins like vitronectin, fibronectin through the arginine-glycine-aspartic acid (RGD) sequence. Up-regulation of αvβ3 has been found to be associated with a wide range of cancers, making it a broad-spectrum tumor-marker. In this study, USPIO nanocrystals were synthesized and surface passivated with caffeic acid. The large number of the carboxylic acid functions at the outer surface of the nanoplatforms was used for the covalent coupling of Rhodamine123, polyethylene glycol (PEG) and cyclic RGD. Soluble carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used to crosslink carboxylic acid with the amino group of the ligands. We examined the design of the nanoplatforms with each individual entity and then the combination of two and three of them. Several methods were used to characterize the nanoparticle surface functionalization and the magnetic properties of these contrast agents were studied using a 1.5 T clinical MRI scanner. The affinity towards integrins was evidenced by surface plasmon resonance and solid-phase receptor-binding assay.

Graphical abstract: Optimized multimodal nanoplatforms for targeting αvβ3 integrins

Back to tab navigation

Supplementary files

Article information

21 Jul 2013
25 Sep 2013
First published
30 Sep 2013

Nanoscale, 2013,5, 11478-11489
Article type

Optimized multimodal nanoplatforms for targeting αvβ3 integrins

J. Bolley, Y. Lalatonne, O. Haddad, D. Letourneur, M. Soussan, J. Pérard-Viret and L. Motte, Nanoscale, 2013, 5, 11478
DOI: 10.1039/C3NR03763K

Social activity

Search articles by author