Jump to main content
Jump to site search

Issue 24, 2013
Previous Article Next Article

3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

Author affiliations

Abstract

Three-dimensional (3D) hierarchically porous composite Cu–BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(II) and Bi(III) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro–nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu–BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450–750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.

Graphical abstract: 3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Jul 2013, accepted on 08 Oct 2013 and first published on 14 Oct 2013


Article type: Paper
DOI: 10.1039/C3NR03491G
Citation: Nanoscale, 2013,5, 12542-12550

  •   Request permissions

    3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    M. Guerrero, S. Pané, B. J. Nelson, M. D. Baró, M. Roldán, J. Sort and E. Pellicer, Nanoscale, 2013, 5, 12542
    DOI: 10.1039/C3NR03491G

Search articles by author

Spotlight

Advertisements