Issue 21, 2013

Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro

Abstract

Hypericin (Hy), a naturally occurring photosensitizer (PS), is extracted from Hypericum perforatum plants, commonly known as St. John's wort. The discovery of the in vitro and in vivo photodynamic activities of hypericin as a photosensitizer generated great interest, mainly to induce a very potent antitumoral effect. However, this compound belongs to the family of naphthodianthrones which are known to be poorly soluble in physiological solutions and produce non-fluorescent aggregates (A. Wirz et al., Pharmazie, 2002, 57, 543; A. Kubin et al., Pharmazie, 2008, 63, 263). These phenomena can reduce its efficiency as a photosensitizer for the clinical application. In the present contribution, we have prepared, characterized, and studied the photochemical properties of Hy-loaded lipid nanocapsule (LNC) formulations. The amount of singlet oxygen (1O2) generated was measured by the use of p-nitroso-dimethylaniline (RNO) as a selective scavenger under visible light irradiation. Our results showed that Hy-loaded LNCs suppressed aggregation of Hy in aqueous media, increased its apparent solubility, and enhanced the production of singlet oxygen in comparison with free drug. Indeed, encapsulation of Hy in LNCs led to an increase of 1O2 quantum yield to 0.29–0.44, as compared to 0.02 reported for free Hy in water. Additionally, we studied the photodynamic activity of Hy-loaded LNCs on human cervical carcinoma (HeLa) and Human Embryonic Kidney (HEK) cells. The cell viability decreased radically to 10–20% at 1 μM, reflecting Hy-loaded LNC25 phototoxicity.

Graphical abstract: Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2013
Accepted
20 Aug 2013
First published
23 Aug 2013

Nanoscale, 2013,5, 10562-10572

Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro

A. Barras, L. Boussekey, E. Courtade and R. Boukherroub, Nanoscale, 2013, 5, 10562 DOI: 10.1039/C3NR02724D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements