Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 14, 2020
Previous Article Next Article

Thiazole-substituted non-symmetrical metallophthalocyanines: synthesis, characterization, electrochemical and heavy metal ion sensing properties

Author affiliations

Abstract

Non-symmetrical metallophthalocyanines (MPc), in which M is zinc(II), chloromanganese(III), or cobalt(II), containing a thiazole ring in their peripheries were synthesized by the statistical condensation of two different phthalonitriles, namely 4-(4-phenyl-2-thiazolyl)thiophthalonitrile (1) and 4-tert-butylphthalonitrile (2). The newly prepared compounds were characterized via elemental analysis techniques, including ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and mass spectrometry. The redox properties of the MPcs were tested via cyclic and square wave voltammetry methods. The redox results elucidated the effects of the metal centers and electrolytic systems on the electrochemical activities of the designed phthalocyanine complexes. The heavy metal ion recognition abilities of these complexes were also analyzed by employing an AT-cut quartz crystal resonator with a fundamental resonance frequency of 10 MHz. The results revealed that Cu2+ at a concentration of 0.40 mg L−1 in the aqueous solution caused a ∼31 kHz frequency shift of the quartz crystal coated with a thin film of MnPc (5). This considerable observed shift in the resonance frequency indicated the powerful sensing ability of compound 5 to detect Cu2+ ions, even in liquid phase. Furthermore, the heavy metal ion sensing results showed that this examined sensitivity of the QCM-based sensor strongly depends upon the atomic radius of the metal ions in aqueous solution.

Graphical abstract: Thiazole-substituted non-symmetrical metallophthalocyanines: synthesis, characterization, electrochemical and heavy metal ion sensing properties

Back to tab navigation

Article information


Submitted
27 Jan 2020
Accepted
03 Mar 2020
First published
04 Mar 2020

New J. Chem., 2020,44, 5201-5210
Article type
Paper

Thiazole-substituted non-symmetrical metallophthalocyanines: synthesis, characterization, electrochemical and heavy metal ion sensing properties

A. Beduoğlu, A. M. Sevim, A. Koca, A. Altındal and Z. Altuntaş Bayır, New J. Chem., 2020, 44, 5201
DOI: 10.1039/D0NJ00466A

Social activity

Search articles by author

Spotlight

Advertisements