Jump to main content
Jump to site search

Issue 48, 2019
Previous Article Next Article

A substrate-free Mo2C-based electrocatalyst by facile glucose-blowing for efficient hydrogen production

Author affiliations

Abstract

The production of hydrogen via electrochemical water splitting combined with fuel cells is a promising way to realize sustainable energy systems. Herein, we report a simple one-step, scalable glucose-blowing method to synthesize substrate-free porous molybdenum carbide nanoparticles coated with an N-doped porous carbon shell, termed Gb-Mo2C@PC. This catalyst exhibited a good hydrogen evolution reaction (HER) performance with overpotentials of 169 and 188 mV at a current density of 10 mA cm−2 and long-term stability in basic and acid electrolyte, respectively. The HER activity can be ascribed to the fact that the high surface area of its carbon shell can effectively prevent the aggregation of the Mo2C nanoparticles, and their uniform distribution favourably exposes abundant active sites. Moreover, the porous carbon shell coating can accelerate the charge transfer during the process of hydrogen generation and protect the Mo2C nanoparticles from corrosion. Furthermore, this strategy may provide a versatile route for the scaled-up production of cost-effective materials for electrochemical applications.

Graphical abstract: A substrate-free Mo2C-based electrocatalyst by facile glucose-blowing for efficient hydrogen production

Back to tab navigation

Supplementary files

Article information


Submitted
06 Sep 2019
Accepted
04 Nov 2019
First published
14 Nov 2019

New J. Chem., 2019,43, 18970-18974
Article type
Letter

A substrate-free Mo2C-based electrocatalyst by facile glucose-blowing for efficient hydrogen production

X. Li, X. Hu, X. Wang, Q. Q. Pan, L. Liu and Z. Su, New J. Chem., 2019, 43, 18970
DOI: 10.1039/C9NJ04598H

Social activity

Search articles by author

Spotlight

Advertisements