Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 8, 2019
Previous Article Next Article

Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes

Author affiliations

Abstract

The catalytic activity of two halometallate complexes based on imidazolium cations, (dimim)[FeCl4] (1) and (dimim)2[Fe2Cl6(μ-O)] (2), was evaluated in the glycolysis of polyethylene terephthalate (PET), either under conventional heating or microwave-assisted conditions. The two procedures led to the formation of bis(2-hydroxyethyl)terephthalate (BHET) as the major product with high yields, also allowing the isolation and structural characterization of a new polymorph. The influence of the halometallate structure on the catalytic activity was investigated, and additional experimental studies proved the involvement of both the imidazolium cation and metal anion in the reaction mechanism. The comparison of both approaches showed the advantages of the microwave methodology in terms of efficiency and time saving. Indeed, the use of ground PET and microwave heating provided quantitative yields of BHET. Under conventional heating conditions, the dinuclear iron complex gave a slightly lower yield than (dimim)[FeCl4] (74% vs. 77% for post-consumer PET) after 24 h of reaction. However, the microwave-assisted process led to comparable results in remarkably shorter reaction times (2 h). Interestingly, complex 2, containing the dipolar [Fe2Cl6(μ-O)]2− moiety, provided higher yields than 1 with the non-dipolar [FeCl4] anion (77% vs. 69%). This behaviour has been rationalized on the basis of dielectric heating mechanisms (polarization and conduction), and it suggests a new approach towards obtaining more efficient catalysts by tailoring the catalytic species to be active in both heating mechanisms.

Graphical abstract: Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Nov 2018, accepted on 21 Jan 2019 and first published on 22 Jan 2019


Article type: Paper
DOI: 10.1039/C8NJ06090H
Citation: New J. Chem., 2019,43, 3476-3485

  •   Request permissions

    Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes

    F. Scé, I. Cano, C. Martin, G. Beobide, Ó. Castillo and I. de Pedro, New J. Chem., 2019, 43, 3476
    DOI: 10.1039/C8NJ06090H

Search articles by author

Spotlight

Advertisements