Issue 17, 2017

A convenient, efficient and reusable N-heterocyclic carbene-palladium(ii) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions

Abstract

In the present work, a new magnetic nanoparticle supported N-heterocyclic carbene-palladium(II) (NO2-NHC-Pd@Fe3O4) nanomagnetic catalyst was synthesized by a facile multistep synthesis under aerobic conditions using inexpensive chemicals. The NO2-NHC-Pd@Fe3O4 nanomagnetic catalyst was characterized by various analytical techniques such as attenuated total reflectance infrared spectroscopy (ATR-IR), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller surface area analysis (BET). The synthesized NO2-NHC-Pd@Fe3O4 nanomagnetic catalyst showed excellent catalytic activity in both Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions for various substrates under mild reaction conditions. Recovery of the NO2-NHC-Pd@Fe3O4 nanomagnetic catalyst from the reaction mixture was easily accomplished by applying an external magnet. The recovered NO2-NHC-Pd@Fe3O4 nanomagnetic catalyst exhibited very good catalytic activity up to seven recycles in Suzuki–Miyaura and five recycles in Mizoroki–Heck cross-coupling reactions without considerable loss of its catalytic activity.

Graphical abstract: A convenient, efficient and reusable N-heterocyclic carbene-palladium(ii) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2017
Accepted
27 Jul 2017
First published
28 Jul 2017

New J. Chem., 2017,41, 9531-9545

A convenient, efficient and reusable N-heterocyclic carbene-palladium(II) based catalyst supported on magnetite for Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions

V. Kandathil, B. D. Fahlman, B. S. Sasidhar, S. A. Patil and S. A. Patil, New J. Chem., 2017, 41, 9531 DOI: 10.1039/C7NJ01876B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements