Issue 7, 2015

Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode

Abstract

The 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) functionalized ITO substrate was successfully prepared via a solution immersion method and then incorporated with poly(4,4′,4′′-tris[4-(2-bithienyl)phenyl]amine) (PTBTPA) to form the PTBTPA–[BMIM]BF4 film by electrochemical polymerization, which presents reversible multicolor changes from orange, olive green to dark gray. Interestingly, compared with the bleaching time (tb) and the coloring time (tc) of the pure PTBTPA film (1.76 s and 4.51 s) at 1100 nm, the PTBTPA–[BMIM]BF4 film exhibits shorter tb and tc (0.87 s and 2.90 s) at the same wavelength. Obviously, the switching speed of the PTBTPA–[BMIM]BF4 film has been improved significantly, and it is further supported by the electrochemical impedance spectra which demonstrate that the PTBTPA–[BMIM]BF4 film possesses much lower charge transfer resistance. The reduction of charge transfer resistance could be attributed to (1) the private channel provided by the ionic liquid [BMIM]BF4 as a linker between the polymer and the electrode; (2) the ability of the simultaneous doping and dedoping of ClO4 in the electrolyte and BF4 ions of the ionic liquid. Moreover, the cyclic stability studies reveal that the PTBTPA–[BMIM]BF4 film exhibits better durability and retains 70.4% of its original electroactivity after 500 cycles in ionic liquid solution. The results demonstrate that the electrochemical and the electrochromic performances could be significantly enhanced through incorporating PTBTPA with the ionic liquid ([BMIM]BF4).

Graphical abstract: Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode

Article information

Article type
Paper
Submitted
21 Mar 2015
Accepted
09 Apr 2015
First published
05 May 2015

New J. Chem., 2015,39, 5329-5335

Author version available

Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode

M. Ouyang, Y. Yang, X. Lv, Y. Han, S. Huang, Y. Dai, C. Su, Y. Lv, M. Sumita and C. Zhang, New J. Chem., 2015, 39, 5329 DOI: 10.1039/C5NJ00703H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements