Issue 2, 2011

A low band gap donor–acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties

Abstract

A new low band gap copolymer containing dialkylfluorene and 4,7-dithienyl-2,1,3-benzothiadiazole (TBT), poly(fluorenevinylene-alt-4,7-dithienyl-2,1,3-benzothiadiazole) (PF-TBT) was synthesized by Heck cross-coupling polymerization. The copolymer is soluble in common organic solvents such as chloroform, tetrahydrofuran and chlorobenzene. The TGA result indicated that the copolymer possesses good thermal stability. The absorption, electrochemical and photovoltaic properties of PF-TBT were investigated and compared with those of poly(fluorenevinylene-alt-4,7-diphenyl-2,1,3-benzothiadiazole) (PF-DBT) whose structure is similar to PF-TBT. The copolymer exhibited a broad absorption band with an absorption edge close to 700 nm and an optical band gap of 1.82 eV. Cyclic voltammetry studies indicated that the relatively low HOMO energy level assured a higher open circuit voltage (Voc) when PF-TBT is used as the donor material in a photovoltaic cell. The bulk heterojunction (BHJ) solar cell using PF-TBT as the donor and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the acceptor with the structure of ITO/PEDOT : PSS/copolymer : PCBM/LiF/Al, exhibited a Voc of 0.86 V, short-circuit current density (Jsc) of 3.97 mA cm−2, fill factor (FF) of 0.35, and a power conversion efficiency (PCE) of 1.18% under one sun of AM 1.5 solar simulator illumination (100 mW cm−2).

Graphical abstract: A low band gap donor–acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties

Article information

Article type
Paper
Submitted
19 May 2010
Accepted
05 Jul 2010
First published
21 Oct 2010

New J. Chem., 2011,35, 385-393

A low band gap donor–acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties

J. Pei, S. Wen, Y. Zhou, Q. Dong, Z. Liu, J. Zhang and W. Tian, New J. Chem., 2011, 35, 385 DOI: 10.1039/C0NJ00378F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements