Issue 9, 2007

2,6-Diaryl-9,10-anthraquinones as models for electron-accepting polymers

Abstract

Anthraquinone derivatives have been little used in microelectronics though they are attractive scaffolds due to their electron-accepting properties. As part of a preliminary study, a series of conjugated anthraquinone derivatives has been synthesised. The crystal structures of 2,6-diphenyl-9,10-anthraquinone, 2,6-di(thien-2′-yl)-9,10-anthraquinone and 2,6-bis(9′,9′-dioctylfluoren-2′-yl)-9,10-anthraquinone are presented. The UV-Vis absorption spectra of the anthraquinone derivatives synthesised are characterised in each case by the presence of a very intense long-wavelength band that we attribute to intramolecular charge transfer (CT) from the electron-rich aromatic substituents to the electron-deficient anthraquinone moiety. The fluorescence of these compounds is also strongly affected by this intramolecular CT and quantum yields up to 6.8 × 10−2 were found in solution. This long wavelength emission in the yellow-orange region is reminiscent of the fluorescence of fluorenone derivatives substituted with aromatic groups, including fluorenone-containing polyfluorenes. The relatively high electron affinity of these compounds together with their tunable emission suggests their potential application in organic electronics. Additionally, the electrochemical behaviour of the present compounds reveals a partial destabilisation of both of the aromatic rings in the anthraquinone moiety. Finally, chemical doping experiments were conducted. These clearly show the extended conjugation characteristic of the reduced states of anthraquinone.

Graphical abstract: 2,6-Diaryl-9,10-anthraquinones as models for electron-accepting polymers

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2007
Accepted
09 May 2007
First published
06 Jun 2007

New J. Chem., 2007,31, 1585-1593

2,6-Diaryl-9,10-anthraquinones as models for electron-accepting polymers

J. E. Gautrot, P. Hodge, D. Cupertino and M. Helliwell, New J. Chem., 2007, 31, 1585 DOI: 10.1039/B701257H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements