Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 6, 2020
Previous Article Next Article

Refractive index of nanoconfined water reveals its anomalous physical properties

Author affiliations

Abstract

Despite extensive studies on the distinctive properties of water confined in a nanospace, the underlying mechanism and significance of the lengthscale involved in the confinement effects are still subjects of controversy. The dielectric constant and the refractive index in particular are key parameters in modeling and understanding nanoconfined water, yet experimental evidence is lacking. We report the measurement of the refractive indices of water in 10–100 nm spaces by exploiting the confinement of water and localized surface plasmons in a physicochemically well-defined nanocavity. The results revealed significantly low values and the scaling behavior of the out-of-plane refractive index n of confined water. They are attributed to the polarization suppression at the interfaces and the long-range correlation in electronic polarization facilitated by the strengthened H-bonding network. Using the refractive index as a sensing probe, we also observed anomalous stability of water structures over a wide range of temperature. Our measurement results provide essential feedback information for benchmarking water models and molecular interactions under nanoconfinement. This study also opens up a new methodology of using plasmon resonance in characterizing nanoconfined molecules and chemical reactions, and thus gives us fundamental insight into confinement effects.

Graphical abstract: Refractive index of nanoconfined water reveals its anomalous physical properties

Back to tab navigation

Article information


Submitted
25 Mar 2020
Accepted
27 Apr 2020
First published
27 Apr 2020

Nanoscale Horiz., 2020,5, 1016-1024
Article type
Communication

Refractive index of nanoconfined water reveals its anomalous physical properties

T. H. H. Le, A. Morita and T. Tanaka, Nanoscale Horiz., 2020, 5, 1016
DOI: 10.1039/D0NH00180E

Social activity

Search articles by author

Spotlight

Advertisements