Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2016
Previous Article Next Article

Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss

Author affiliations

Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy has found a wide range of applications in biomedicine, food safety and environmental monitoring. However, to date, it is difficult for most SERS substrates to provide an extremely sensitive and highly uniform Raman response simultaneously. Here, we developed a sensitive and uniform SERS sensing strategy based on grating-integrated gold nanograsses (GIGNs), which can amplify the SERS signal up to 10-fold compared to the nanograss without grating (namely on the flat substrate) experimentally. Numerical simulation results show that such an improvement of SERS sensitivity arises from the enhanced hotspots relying on the strong coupling between the localized surface plasmon resonances of individual stripe-regulated gold nanorod assemblies and Wood’s anomalies in air and dielectric grating. Importantly, these hotspots on the substrate can be flexibly tailored by adjusting the height and periodicity of the loaded grating. The SERS performances of the GIGNs have further been successfully demonstrated with the label-free detection of adenine and cytosine (DNA bases) molecules at the nanomolar level. Moreover, the GIGNs also presented the uniform spot-to-spot and sample-to-sample SERS signals of the analyte molecules (relative standard deviations down to ∼11% and 13%, respectively). These advantages suggest that our GIGN substrates are of great potential for SERS-related sensing.

Graphical abstract: Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss

Back to tab navigation

Supplementary files

Article information


Submitted
27 Mar 2016
Accepted
04 May 2016
First published
04 May 2016

Nanoscale Horiz., 2016,1, 290-297
Article type
Communication

Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss

Y. Shen, X. Cheng, G. Li, Q. Zhu, Z. Chi, J. Wang and C. Jin, Nanoscale Horiz., 2016, 1, 290
DOI: 10.1039/C6NH00059B

Social activity

Search articles by author

Spotlight

Advertisements