Jump to main content
Jump to site search

Issue 11, 2020
Previous Article Next Article

High power Na3V2(PO4)3 symmetric full cell for sodium-ion batteries

Author affiliations

Abstract

Sodium-ion batteries (SIBs) are a viable substitute for lithium-ion batteries due to the low cost and wide availability of sodium. However, practical applications require the development of fast charging sodium-ion-based full-cells with high power densities. Na3V2(PO4)3 (NVP) is a bipolar material with excellent characteristics as both a cathode and an anode material in SIBs. Designing symmetric cells with NVP results in a single voltage plateau with significant specific capacity which is ideal for a full cell. Here we demonstrate for the first time a tremendous improvement in the performance of NVP symmetric full cells by introducing an ether-based electrolyte which favors fast reaction kinetics. In a symmetric full cell configuration, 75.5% of the initial capacity was retained even after 4000 cycles at 2 A g−1, revealing ultra-long cyclability. Excellent rate performances were obtained at current densities as high as 1000C, based on the cathode mass, revealing ultrafast Na+ transfer. The power density obtained for this NVP symmetric cell (48 250 W kg−1) is the best among those of all the sodium-ion-based full cells reported to date.

Graphical abstract: High power Na3V2(PO4)3 symmetric full cell for sodium-ion batteries

Back to tab navigation

Supplementary files

Article information


Submitted
31 Aug 2020
Accepted
26 Sep 2020
First published
20 Oct 2020

This article is Open Access

Nanoscale Adv., 2020,2, 5166-5170
Article type
Communication

High power Na3V2(PO4)3 symmetric full cell for sodium-ion batteries

M. K. Sadan, A. K. Haridas, H. Kim, C. Kim, G. Cho, K. Cho, J. Ahn and H. Ahn, Nanoscale Adv., 2020, 2, 5166
DOI: 10.1039/D0NA00729C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements