Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2013
Previous Article Next Article

Metal ion release from metallothioneins: proteolysis as an alternative to oxidation

Author affiliations

Abstract

Metallothioneins (MTs) are among others involved in the cellular regulation of essential ZnII and CuI ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the ZnII-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. ZnII competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the ZnII release processes. The CuI-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. ZnII release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

Graphical abstract: Metal ion release from metallothioneins: proteolysis as an alternative to oxidation

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Mar 2013, accepted on 13 Jun 2013 and first published on 09 Jul 2013


Article type: Paper
DOI: 10.1039/C3MT00079F
Metallomics, 2013,5, 1204-1214
  • Open access: Creative Commons BY license
  •   Request permissions

    Metal ion release from metallothioneins: proteolysis as an alternative to oxidation

    E. A. Peroza, A. dos Santos Cabral, X. Wan and E. Freisinger, Metallomics, 2013, 5, 1204
    DOI: 10.1039/C3MT00079F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements