Issue 8, 2011

Synchrotron radiation X-ray fluorescence microscopy reveals a spatial association of copper on elastic laminae in rat aortic media

Abstract

Copper, an essential trace metal in humans, plays an important role in elastic formation. However, little is known about the spatial association between copper, elastin, and elastin producing cells. The aorta is the largest artery; the aortic media is primarily composed of the elastic lamellae and vascular smooth muscle cells, which makes it a good model to address this issue. Synchrotron radiation X-ray fluorescence microscopy (SRXRF) is a new generation technique to investigate the spatial topography of trace metals in biological samples. Recently, we utilized this technique to determine the topography of copper as well as other trace elements in aortic media of Sprague Dawley rats. A standard rat diet was used to feed Sprague Dawley rats, which contains the normal dietary requirements of copper and zinc. Paraffin embedded segments (4 μm of thickness) of thoracic aorta were analyzed using a 10 keV incident monochromatic X-ray beam focusing on a spot size of 0.3 μm × 0.2 μm (horizontal × vertical). The X-ray spectrum was measured using an energy-dispersive silicon drift detector for elemental topography. Our results showed that phosphorus, sulfur, and zinc are predominately distributed in the vascular smooth muscle cells, whereas copper is dramatically accumulated in elastic laminae, indicating a preferential spatial association of copper on elastic laminae in aortic media. This finding sheds new light on the role of copper in elastic formation. Our studies also demonstrate that SRXRF allows for the visualization of trace elements in tissues and cells of rodent aorta with high spatial resolution and provides an opportunity to study the role of trace elements in vasculature.

Graphical abstract: Synchrotron radiation X-ray fluorescence microscopy reveals a spatial association of copper on elastic laminae in rat aortic media

Article information

Article type
Paper
Submitted
08 Mar 2011
Accepted
19 Apr 2011
First published
18 May 2011

Metallomics, 2011,3, 823-828

Spotlight

Advertisements