Issue 5, 2015

Searching beyond Gd for magnetocaloric frameworks: magnetic properties and interactions of the Ln(HCO2)3 series

Abstract

This study probes the magnetic properties and interactions of the Ln(HCO2)3 (Ln = Tb3+–Er3+) frameworks. We show that the magnetocaloric effect of Tb(HCO2)3 is significantly higher above 4 K in moderate magnetic fields compared to the promising Gd(HCO2)3. While the peak performance of Tb(HCO2)3 is lower than Gd(HCO2)3, we also find that the Gd-rich members of the solid solution Gd1−xTbx(HCO2)3 blend the advantages of both end-members. Using neutron diffraction experiments, Tb(HCO2)3 is found to be antiferromagnetic below 1.7 K with ferromagnetic face-sharing chains and antiferromagnetic coupling between them. Analysis of magnetic diffuse scattering of the paramagnetic phase indicates that ferromagnetic coupling is retained, and it is likely that this plays a role in improving its magnetocaloric performance in low fields.

Graphical abstract: Searching beyond Gd for magnetocaloric frameworks: magnetic properties and interactions of the Ln(HCO2)3 series

Supplementary files

Article information

Article type
Communication
Submitted
22 Jun 2015
Accepted
21 Jul 2015
First published
21 Jul 2015

Mater. Horiz., 2015,2, 528-535

Author version available

Searching beyond Gd for magnetocaloric frameworks: magnetic properties and interactions of the Ln(HCO2)3 series

P. J. Saines, J. A. M. Paddison, P. M. M. Thygesen and M. G. Tucker, Mater. Horiz., 2015, 2, 528 DOI: 10.1039/C5MH00113G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements