Issue 8, 2012

Large scale phosphoproteome analysis of LNCaP human prostate cancer cells

Abstract

Prostate cancer is the most frequently diagnosed cancer among men in the western world. The androgen receptor, a phosphoprotein, is suspected to be involved in all stages of the prostate cancer. Androgen receptor activity can be modulated by various kinases such as PKA, MAPK, AKT, and Src. Phosphorylation is an important post-translational modification and serves as a molecular on–off switch to regulate signaling. Disruptions of cellular phosphorylation are associated with various diseases such as cancer and kinases provide important drug targets. Here we present an analysis of the phosphoproteome in LNCaP human prostate cancer cells. The analytical strategy employed here used proteomics based methodologies with a combination of detergents and chaotropic reagents during trypsin digestion followed by titanium dioxide enrichment of phosphopeptides. Over the course of multiple analyses by mass spectrometry we identified a total of 746 phosphorylation sites in 540 phosphopeptides corresponding to 116 phosphoproteins, of which 56 had not been previously reported. Phosphoproteins identified included transcription factors, co-regulators of the androgen receptor, and cancer-related proteins that include β-catenin, USP10, and histone deacetylase-2. The information of signaling pathways, motifs of phosphorylated peptides, biological processes, molecular functions, cellular components, and protein interactions from the identified phosphoproteins established a map of phosphoproteome and signaling pathways in LNCaP cells.

Graphical abstract: Large scale phosphoproteome analysis of LNCaP human prostate cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2012
Accepted
01 May 2012
First published
10 May 2012

Mol. BioSyst., 2012,8, 2174-2182

Large scale phosphoproteome analysis of LNCaP human prostate cancer cells

J. Myung and M. D. Sadar, Mol. BioSyst., 2012, 8, 2174 DOI: 10.1039/C2MB25151E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements