Issue 12, 2009

Conformational averaging in structural biology: issues, challenges and computational solutions

Abstract

Most experimental methods in structural biology provide time- and ensemble-averaged signals and, consequently, molecular structures based on such signals often exhibit only idealized, average features. Second, most experimental signals are only indirectly related to real, molecular geometries, and solving a structure typically involves a complicated procedure, which may not always result in a unique solution. To what extent do such conformationally-averaged, non-linear experimental signals and structural models derived from them accurately represent the underlying microscopic reality? Are there some structural motifs that are actually artificially more likely to be “seen” in an experiment simply due to the averaging artifact? Finally, what are the practical consequences of ignoring the averaging effects when it comes to functional and mechanistic implications that we try to glean from experimentally-based structural models? In this review, we critically address the work that has been aimed at studying such questions. We summarize the details of experimental methods typically used in structural biology (most notably nuclear magnetic resonance, X-ray crystallography and different types of spectroscopy), discuss their individual susceptibility to conformational (motional) averaging, and review several theoretical approaches, most importantly molecular dynamics simulations that are increasingly being used to aid experimentalists in interpreting structural biology experiments.

Graphical abstract: Conformational averaging in structural biology: issues, challenges and computational solutions

Article information

Article type
Review Article
Submitted
24 Aug 2009
Accepted
21 Sep 2009
First published
06 Oct 2009

Mol. BioSyst., 2009,5, 1606-1616

Conformational averaging in structural biology: issues, challenges and computational solutions

D. Kruschel and B. Zagrovic, Mol. BioSyst., 2009, 5, 1606 DOI: 10.1039/B917186J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements