Issue 21, 2019

Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device

Abstract

Exosomes are nano-scale membrane-encapsulated vesicles produced by the majority of cells and have emerged as a rich source of biomarkers for a wide variety of diseases. Although many approaches have been developed for exosome isolation from biofluids, most of them have substantial shortcomings including long processing time, inefficiency, high cost, lack of specificity and/or surface marker-dependency. To address these issues, here we report a novel insulator-based dielectrophoretic (iDEP) device predicated on an array of borosilicate micropipettes to rapidly isolate exosomes from conditioned cell culture media and biofluids, such as plasma, serum, and saliva. The device is capable of exosome isolation from small sample volumes of 200 μL within 20 minutes under a relatively low (10 V cm−1) direct current (DC). This device is easy to fabricate thus, no cleanroom facility and expensive equipment are needed. Therefore, the iDEP device offers a rapid and cost-effective strategy for exosome isolation from biofluids in timely manner while maintaining the yield and purity.

Graphical abstract: Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device

Article information

Article type
Paper
Submitted
10 Sep 2019
Accepted
27 Sep 2019
First published
02 Oct 2019

Lab Chip, 2019,19, 3726-3734

Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device

L. Shi, D. Kuhnell, V. J. Borra, S. M. Langevin, T. Nakamura and L. Esfandiari, Lab Chip, 2019, 19, 3726 DOI: 10.1039/C9LC00902G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements