Issue 18, 2019

A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments

Abstract

Human skin models are essential for understanding dermatological diseases and testing new treatment strategies. The use of skin biopsies ex vivo is the most accurate model. However, their use is expensive and exposes the donor to pain and scarring. While bioengineered skin samples provide a cheaper alternative, they have limitations due to their simple structure and functionality compared to human skin. Here, we present a skin-on-a-chip device designed to study neutrophil responses to Staphylococcus aureus skin infections. We integrate human skin microcolumns, which have a cross-section that is ∼100 times smaller than traditional skin biopsies, are full-thickness, and are collected using minimally invasive skin sampling techniques. We use human neutrophils directly from one drop of blood, without the need for blood separation. Using the skin-on-a-chip device with skin and blood samples from healthy donors, we show that the neutrophil responses correlate with the bacteria-load in the skin. A pre-incubation step increases the number of migrating neutrophils in response to a low concentration of bacteria. Antibiotic treatment of S. aureus-infected skin samples reduces the number of neutrophils migrating towards the skin. Overall, we validate a skin on a chip model that enables the study of neutrophil migration to the skin in the presence of microbes and following the administration of antibiotics, two situations relevant to clinical cases of human skin and soft tissue infections.

Graphical abstract: A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2019
Accepted
05 Aug 2019
First published
19 Aug 2019

Lab Chip, 2019,19, 3094-3103

A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments

J. J. Kim, F. Ellett, C. N. Thomas, F. Jalali, R. R. Anderson, D. Irimia and A. B. Raff, Lab Chip, 2019, 19, 3094 DOI: 10.1039/C9LC00399A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements