Jump to main content
Jump to site search

Issue 8, 2019
Previous Article Next Article

A miniaturized push–pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain

Author affiliations

Abstract

Measuring biomolecule concentrations in the brain of living animals, in real time, is a challenging task, especially when detailed information at high temporal resolution is also required. Traditionally, microdialysis probes are used that generally have sampling areas in the order of about 1 mm2, and provide information on concentrations with a temporal resolution of at least several minutes. In this paper, we present a novel miniaturized push–pull perfusion sampling probe that uses an array of small 3 μm-wide sampling channels to sample neurotransmitters at a typical recovery rate of 61%, with a reduced risk of clogging. The added feature to segment the dialysate inside the probe into small water-in-decane droplets enables the detection of concentrations with a temporal resolution of a few seconds. Here we used the probe for in vivo recordings of neurotransmitter glutamate released upon electrical stimulation in the brain of a mouse to demonstrate the feasibility of the probe for real-time neurochemical brain analysis.

Graphical abstract: A miniaturized push–pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain

Back to tab navigation

Supplementary files

Article information


Submitted
23 Oct 2018
Accepted
01 Mar 2019
First published
05 Mar 2019

This article is Open Access

Lab Chip, 2019,19, 1332-1343
Article type
Paper

A miniaturized push–pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain

F. T. G. van den Brink, T. Phisonkunkasem, A. Asthana, J. G. Bomer, A. M. J. M. van den Maagdenberg, E. A. Tolner and M. Odijk, Lab Chip, 2019, 19, 1332
DOI: 10.1039/C8LC01137K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements