Issue 4, 2019

A microfluidic sensor for detecting chlorophenols using cross-linked enzyme aggregates (CLEAs)

Abstract

Chlorophenols have a strong medicinal smell and can be detected by the human nose at parts-per-million levels. Therefore, continuous monitoring of chlorophenols in water supplies is highly important. Herein, we reported a microfluidic sensor which can be used to detect 2,4-dichlorophenol (2,4-DCP) in real time with a limit of detection of around 0.1 ppm. The microfluidic sensor is a membrane-less galvanic cell which consists of two laminar flows running in parallel inside a straight channel. The sensor measures the potential difference between a solution containing 2,4-DCP and a reference solution containing acetate buffer. In a continuous-flow mode, the cell potential is proportional to the concentration of 2,4-DCP. To render specificity for the sensor, we incorporate a pre-treatment section where the incoming solution containing 2,4-DCP is split into two streams. One of the streams is brought into contact with cross-linked laccase aggregates (which catalyzes the hydrolysis of 2,4-DCP) and the second stream is taken as a reference solution. By comparing the potential difference between the two streams, we can determine the concentration of 2,4-DCP with high specificity. The microfluidic sensor platform is potentially useful for real-time detection of micropollutants present in aquatic systems with high sensitivity and specificity.

Graphical abstract: A microfluidic sensor for detecting chlorophenols using cross-linked enzyme aggregates (CLEAs)

Article information

Article type
Paper
Submitted
07 Oct 2018
Accepted
28 Dec 2018
First published
02 Jan 2019

Lab Chip, 2019,19, 634-640

A microfluidic sensor for detecting chlorophenols using cross-linked enzyme aggregates (CLEAs)

W. F. Ho, L. T. Nguyen and K. Yang, Lab Chip, 2019, 19, 634 DOI: 10.1039/C8LC01065J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements