Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2019
Previous Article Next Article

High-throughput mechanotransduction in Drosophila embryos with mesofluidics

Author affiliations

Abstract

Developing embryos create complexity by expressing genes to coordinate movement which generates mechanical force. An emerging theory is that mechanical force can also serve as an input signal to regulate developmental gene expression. Experimental methods to apply mechanical stimulation to whole embryos have been limited, mainly to aspiration, indentation, or moving a coverslip; these approaches stimulate only a few embryos at a time and require manual alignment. A powerful approach for automation is microfluidic devices, which can precisely manipulate hundreds of samples. However, using microfluidics to apply mechanical stimulation has been limited to small cellular systems, with fewer applications for larger scale whole embryos. We developed a mesofluidic device that applies the precision and automation of microfluidics to the Drosophila embryo: high-throughput automatic alignment, immobilization, compression, real-time imaging, and recovery of hundreds of live embryos. We then use twist:eGFP embryos to show that the mechanical induction of twist depends on the dose and duration of compression. This device allows us to quantify responses to compression, map the distribution of ectopic twist, and measure embryo stiffness. For building mesofluidic devices, we describe modifications on ultra-thick photolithography, derive an analytical model that predicts the deflection of sidewalls, and discuss parametric calibration. This “mesomechanics” approach combines the high-throughput automation and precision of microfluidics with the biological relevance of live embryos to examine mechanotransduction. These analytical models facilitate the design of future devices to process multicellular organisms such as larvae, organoids, and mesoscale tissue samples.

Graphical abstract: High-throughput mechanotransduction in Drosophila embryos with mesofluidics

Back to tab navigation

Supplementary files

Article information


Submitted
04 Oct 2018
Accepted
31 Jan 2019
First published
04 Feb 2019

Lab Chip, 2019,19, 1141-1152
Article type
Paper
Author version available

High-throughput mechanotransduction in Drosophila embryos with mesofluidics

A. Z. Shorr, U. M. Sönmez, J. S. Minden and P. R. LeDuc, Lab Chip, 2019, 19, 1141
DOI: 10.1039/C8LC01055B

Social activity

Search articles by author

Spotlight

Advertisements