Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 18, 2017
Previous Article Next Article

Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array

Author affiliations


With various promising applications demonstrated, nanofluidics has been of broad research interest in the past decade. As nanofluidics matures from a proof of concept towards practical applications, it faces two major barriers: expensive nanofabrication and ultra-low throughput. To date, the only material that enables nanofabrication-free, high-throughput, yet precisely controllable nanofluidic systems is the close-packed nanoparticle array, i.e. nanofluidic crystals. Recently, significant progress in nanofluidics has been made using nanofluidic crystals, including high-current ionic diodes, high-power energy harvesters, efficient biomolecular separation, and facile biosensors. Nanofluidic crystals are seen as a key to applying nanofluidic concepts to real-world applications. In this review, we introduce the key concepts and models in nanofluidic crystals, summarize the fabrication methods, and discuss the various applications of nanofluidic crystals in depth, highlighting their advantages in terms of simple fabrication, low cost, flexibility, and high throughput. Finally, we provide our perspectives on the future of nanofluidic crystals and their potential impacts.

Graphical abstract: Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array

Back to tab navigation

Article information

03 Jun 2017
20 Jul 2017
First published
20 Jul 2017

Lab Chip, 2017,17, 3006-3025
Article type
Tutorial Review

Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array

W. Ouyang, J. Han and W. Wang, Lab Chip, 2017, 17, 3006
DOI: 10.1039/C7LC00588A

Social activity

Search articles by author