Issue 5, 2017

High-selectivity cytology via lab-on-a-disc western blotting of individual cells

Abstract

Cytology of sparingly available cell samples from both clinical and experimental settings would benefit from high-selectivity protein tools. To minimize cell handling losses in sparse samples, we design a multi-stage assay using a lab-on-a-disc that integrates cell handling and subsequent single-cell western blotting (scWestern). As the two-layer microfluidic device rotates, the induced centrifugal force directs dissociated cells to dams, which in turn localize the cells over microwells. Cells then sediment into the microwells, where the cells are lysed and subjected to scWestern. Taking into account cell losses from loading, centrifugation, and lysis-buffer exchange, our lab-on-a-disc device handles cell samples with as few as 200 cells with 75% cell settling efficiencies. Over 70% of microwells contain single cells after the centrifugation. In addition to cell settling efficiency, cell-size filtration from a mixed population of two cell lines is also realized by tuning the cell time-of-flight during centrifugation (58.4% settling efficiency with 6.4% impurity). Following the upstream cell handling, scWestern analysis detects four proteins (GFP, β-TUB, GAPDH, and STAT3) in a glioblastoma cell line. By integrating the lab-on-a-disc cell preparation and scWestern analysis, our platform measures proteins from sparse cell samples at single-cell resolution.

Graphical abstract: High-selectivity cytology via lab-on-a-disc western blotting of individual cells

Supplementary files

Article information

Article type
Paper
Submitted
27 Oct 2016
Accepted
05 Jan 2017
First published
19 Jan 2017

Lab Chip, 2017,17, 855-863

High-selectivity cytology via lab-on-a-disc western blotting of individual cells

J. J. Kim, E. Sinkala and A. E. Herr, Lab Chip, 2017, 17, 855 DOI: 10.1039/C6LC01333C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements