Jump to main content
Jump to site search

Issue 2, 2016

On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode

Author affiliations

Abstract

Many pharmaceuticals are proteins or their development is based on proteins. Cell-free protein synthesis (CFPS) is an innovative alternative to conventional cell based systems which enables the production of proteins with complex and even new characteristics. However, the short lifetime, low protein production and expensive reagent costs are still limitations of CFPS. Novel automated microfluidic systems might allow continuous, controllable and resource conserving CFPS. The presented microfluidic TRITT platform (TRITT for Transcription – RNA Immobilization & Transfer – Translation) addresses the individual biochemical requirements of the transcription and the translation step of CFPS in separate compartments, and combines the reaction steps by quasi-continuous transfer of RNA templates to enable automated CFPS. In detail, specific RNA templates with 5′ and 3′ hairpin structures for stabilization against nucleases were immobilized during in vitro transcription by newly designed and optimized hybridization oligonucleotides coupled to magnetizable particles. Transcription compatibility and reusability for immobilization of these functionalized particles was successfully proven. mRNA transfer was realized on-chip by magnetic actuated particle transfer, RNA elution and fluid flow to the in vitro translation compartment. The applicability of the microfluidic TRITT platform for the production of the cytotoxic protein Pierisin with simultaneous incorporation of a non-canonical amino acid for fluorescence labeling was demonstrated. The new reaction mode (TRITT mode) is a modified linked mode that fulfills the precondition for an automated modular reactor system. By continual transfer of new mRNA, the novel procedure overcomes problems caused by nuclease digestion and hydrolysis of mRNA during TL in standard CFPS reactions.

Graphical abstract: On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode

Supplementary files

Article information


Submitted
22 Jun 2015
Accepted
22 Oct 2015
First published
27 Oct 2015

This article is Open Access

Lab Chip, 2016,16, 269-281
Article type
Paper

On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode

V. Georgi, L. Georgi, M. Blechert, M. Bergmeister, M. Zwanzig, D. A. Wüstenhagen, F. F. Bier, E. Jung and S. Kubick, Lab Chip, 2016, 16, 269 DOI: 10.1039/C5LC00700C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements