Jump to main content
Jump to site search

Issue 5, 2015
Previous Article Next Article

Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing

Author affiliations

Abstract

Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid–liquid and liquid–elastomer interfaces.

Graphical abstract: Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing

Back to tab navigation

Supplementary files

Article information


Submitted
11 Nov 2014
Accepted
06 Jan 2015
First published
06 Jan 2015

Lab Chip, 2015,15, 1376-1384
Article type
Paper
Author version available

Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing

S. Liu, X. Sun, O. J. Hildreth and K. Rykaczewski, Lab Chip, 2015, 15, 1376
DOI: 10.1039/C4LC01341G

Social activity

Search articles by author

Spotlight

Advertisements