Issue 20, 2013

A microfluidic synchronizer for fission yeast cells

Abstract

Among all the cell cycle synchronization technologies, the baby machine may be considered as the most artifact-free method. A baby machine incubates “mother cells” under normal conditions and collects their “babies”, producing cell cultures that are similar not only in cell cycle phase but also in age. Unlike many other synchronization methods, no cell-cycle-blocking agent or metabolic stress is introduced in this method. Several macroscale and microfluidic baby machines have been developed for producing synchronized cell colonies. However, for rod-shaped cells like fission yeast (Schizosaccharomyces pombe), it is still a challenge to immobilize only the mother cells in a microfluidic device. Here we presented a new baby machine suitable for fission yeast. The device is fixed one end of the cell and releases the free-end daughter cell every time the cell finishes cytokinesis. A variety of structures for cell immobilization were attempted to find the optimal design. For the convenience of collection and further assay, we integrated into our baby machine chip a cell screener, which exploited the deformation of polymer material to switch between opening and closing states. Synchronous populations of fission yeast cells were produced with this device, its working detail was analyzed and performance was evaluated. The device provides a new on-chip tool for cell biology studies.

Graphical abstract: A microfluidic synchronizer for fission yeast cells

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2013
Accepted
28 Jul 2013
First published
30 Jul 2013

Lab Chip, 2013,13, 4071-4077

A microfluidic synchronizer for fission yeast cells

Y. Tian, C. Luo and Q. Ouyang, Lab Chip, 2013, 13, 4071 DOI: 10.1039/C3LC50639H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements