Issue 22, 2011

Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis

Abstract

Most studies of cancer metastasis focus on cancer cell invasion utilizing adhesion assays that are performed independently, and are thus limited in their ability to mimic complex cancer metastasis on a chip. Here we report the development of an integrated cell-based microfluidic chip for intra- and extravasation that combines two assays on one chip for the study of the complex cascade of cancer metastasis. This device consists of two parts; one is an intravasation chamber for the three-dimensional (3-D) culture of cancer cells using a Matrigel matrix, and the other is an extravasation chamber for the detection of metastasized cancer cells by adhesion molecules expressed by epithelial cells. In this novel system, the intravasation and extravasation processes of cancer metastasis can be studied simultaneously using four screw valves. Metastatic LOVO and non-metastatic SW480 cells were used in this study, and the invasion of LOVOs was found to be higher compared to SW480. In contrast, invasion of cells treated with metalloproteinase (MMP) inhibitors decreased within the intravasation chamber. Degraded cancer cells from the intravasation chamber were detected within the extravasation chamber under physiological conditions of shear stress, and differences in binding efficiency were also detected when CA19–9 antibody, an inhibitor of cancer cell adhesion, was used to treat degraded cancer cells. Our results support the potential usefulness of this new 3D cell-based microfluidic system as a drug screening tool to select targets for the development of new drugs and to verify their effectiveness.

Graphical abstract: Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2011
Accepted
09 Sep 2011
First published
05 Oct 2011

Lab Chip, 2011,11, 3880-3887

Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis

M. K. Shin, S. K. Kim and H. Jung, Lab Chip, 2011, 11, 3880 DOI: 10.1039/C1LC20671K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements