Issue 22, 2011

Valve-based microfluidic compression platform: single axon injury and regrowth

Abstract

We describe a novel valve-based microfluidic axon injury micro-compression (AIM) platform that enables focal and graded compression of micron-scale segments of single central nervous system (CNS) axons. The device utilizes independently controlled “push-down” injury pads that descend upon pressure application and contact underlying axonal processes. Regulated compressed gas is input into the AIM system and pressure levels are modulated to specify the level of injury. Finite element modeling (FEM) is used to quantitatively characterize device performance and parameterize the extent of axonal injury by estimating the forces applied between the injury pad and glass substrate. In doing so, injuries are normalized across experiments to overcome small variations in device geometry. The AIM platform permits, for the first time, observation of axon deformation prior to, during, and immediately after focal mechanical injury. Single axons acutely compressed (∼5 s) under varying compressive loads (0–250 kPa) were observed through phase time-lapse microscopy for up to 12 h post injury. Under mild injury conditions (< 55 kPa) ∼73% of axons continued to grow, while at moderate (55–95 kPa) levels of injury, the number of growing axons dramatically reduced to 8%. At severe levels of injury (> 95 kPa), virtually all axons were instantaneously transected and nearly half (∼46%) of these axons were able to regrow within the imaging period in the absence of exogenous stimulating factors.

Graphical abstract: Valve-based microfluidic compression platform: single axon injury and regrowth

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2011
Accepted
09 Sep 2011
First published
06 Oct 2011

Lab Chip, 2011,11, 3888-3895

Valve-based microfluidic compression platform: single axon injury and regrowth

S. Hosmane, A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I. H. Yang, K. T. Ramesh, A. Venkatesan and N. Thakor, Lab Chip, 2011, 11, 3888 DOI: 10.1039/C1LC20549H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements