Issue 9, 2009

Electromechanical model for actuating liquids in a two-plate droplet microfluidic device

Abstract

Both conducting and insulating liquids can be actuated in two-plate droplet (“digital”) microfluidic devices. Droplet movement is accomplished by applying a voltage across electrodes patterned beneath the dielectric-coated top and bottom plates. This report presents a general electromechanical model for calculating the forces on insulating and conducting liquids in two-plate devices. The devices are modeled as an equivalent circuit in which the dielectric layers and ambient medium (air or oil) are described as capacitors, while the liquid being actuated is described as a resistor and capacitor in parallel. The experimental variables are the thickness and dielectric constant of each layer in the device, the gap between plates, the applied voltage and frequency, and the conductivity of the liquid. The model has been used to calculate the total force acting on droplets of liquids that have been studied experimentally, and to explain the relative ease with which liquids of different conductivities can be actuated. The contributions of the electrowetting (EW) and dielectrophoretic (DEP) forces to droplet actuation have also been calculated. While for conductive liquids the EW force dominates, for dielectric liquids, both DEP and EW contribute, and the DEP force may dominate. The general utility of the model is that it can be used to predict the operating conditions needed to actuate particular liquids in devices of known geometry, and to optimize the design and operating conditions to enable movement of virtually any liquid.

Graphical abstract: Electromechanical model for actuating liquids in a two-plate droplet microfluidic device

Article information

Article type
Paper
Submitted
02 Jul 2008
Accepted
23 Jan 2009
First published
19 Feb 2009

Lab Chip, 2009,9, 1219-1229

Electromechanical model for actuating liquids in a two-plate droplet microfluidic device

D. Chatterjee, H. Shepherd and R. L. Garrell, Lab Chip, 2009, 9, 1219 DOI: 10.1039/B901375J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements