Issue 3, 2009

Characterization of porous silicon integrated in liquid chromatography chips

Abstract

Properties of porous silicon which are relevant for use of the material as a stationary phase in liquid chromatography chips, like porosity, pore size and specific surface area, were determined with high-resolution SEM and N2 adsorption–desorption isotherms. For the anodization conditions investigated, porosity is between 20 and 60%, pore sizes between 2 and 5 nm and specific surface area between 130 and 410 m2/cm3. It was established that under identical anodization conditions, porous layer formation is 10–15% slower on micromachined pillars than on flat substrates, and depends on geometrical parameters like pillar diameter and height and interpillar spacing. In microchannels containing pillars with a porous silicon shell, chromatographic experiments on a coumarin dye mixture were performed, which in comparison with non-porous pillars showed a significant increase of the retention factors, resulting from the large internal surface of the porous pillars. The increased relative retention of one of the coumarin dyes, C480, could be correlated quantitatively with the measured internal surface of the porous layer. Due to the small pore size, these porous shell columns are particularly suitable for analytical or preparative separation of low-molecular weight molecules, with applications in metabolomics, food quality control, or medical diagnostics.

Graphical abstract: Characterization of porous silicon integrated in liquid chromatography chips

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2008
Accepted
14 Oct 2008
First published
13 Nov 2008

Lab Chip, 2009,9, 456-463

Characterization of porous silicon integrated in liquid chromatography chips

R. M. Tiggelaar, V. Verdoold, H. Eghbali, G. Desmet and J. G. E. Gardeniers, Lab Chip, 2009, 9, 456 DOI: 10.1039/B812301B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements