Issue 4, 2008

Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel

Abstract

A microfluidic device known to mix bulk solutions, the herringbone microchannel, was incorporated into a surface-binding assay to determine if the recirculation of solution altered the binding of a model protein (streptavidin) to the surface. Streptavidin solutions were pumped over surfaces functionalized with its ligand, biotin, and the binding of streptavidin to those surfaces was monitored using surface plasmon resonance imaging. Surface binding was compared between a straight microchannel and herringbone microchannels in which the chevrons were oriented with and against the flow direction. A 3-dimensional finite-element model of the surface binding reaction was developed for each of the geometries and showed strong qualitative agreement with the experimental results. Experimental and model results indicated that the forward and reverse herringbone microchannels substantially altered the distribution of protein binding (2-dimensional binding profile) as a function of time when compared to a straight microchannel. Over short distances (less than 1.5 mm) down the length of the microchannel, the model predicted no additional protein binding in the herringbone microchannel compared to the straight microchannel, consistent with previous findings in the literature.

Graphical abstract: Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2007
Accepted
15 Jan 2008
First published
21 Feb 2008

Lab Chip, 2008,8, 557-564

Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel

J. O. Foley, A. Mashadi-Hossein, E. Fu, B. A. Finlayson and P. Yager, Lab Chip, 2008, 8, 557 DOI: 10.1039/B713644G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements