Issue 6, 2005

Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator

Abstract

An understanding of chemotaxis at the level of cell–molecule interactions is important because of its relevance in cancer, immunology, and microbiology, just to name a few. This study quantifies the effects of flow on cell migration during chemotaxis in a microfluidic device. The chemotaxis gradient within the device was modeled and compared to experimental results. Chemotaxis experiments were performed using the chemokine CXCL8 under different flow rates with human HL60 promyelocytic leukemia cells expressing a transfected CXCR2 chemokine receptor. Cell trajectories were separated into x and y axis components. When the microchannel flow rates were increased, cell trajectories along the x axis were found to be significantly affected (p < 0.05). Total migration distances were not affected. These results should be considered when using similar microfluidic devices for chemotaxis studies so that flow bias can be minimized. It may be possible to use this effect to estimate the total tractile force exerted by a cell during chemotaxis, which would be particularly valuable for cells whose tractile forces are below the level of detection with standard techniques of traction–force microscopy.

Graphical abstract: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator

Article information

Article type
Paper
Submitted
11 Nov 2004
Accepted
13 Apr 2005
First published
27 Apr 2005

Lab Chip, 2005,5, 611-618

Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator

G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung and J. P. Wikswo, Lab Chip, 2005, 5, 611 DOI: 10.1039/B417245K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements