Issue 43, 2012

Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups

Abstract

Three new copolymers (PT-TPA, PT-DTBT and PT-DTBTTPA) based on benzo[1,2-b:4,5-b]dithiophene (BDT) and thiophene with different conjugated side chains (di(p-tolyl)phenylamine (TPA), 4,7-dithien-5-yl-2,1,3-benzothiadiazole (DTBT) and DTBT-TPA) were synthesized via Stille coupling polymerization. The TPA and the DTBT were introduced to improve the hole-transport ability and broaden the absorption spectrum. The effects of different conjugated side groups on thermal, optical, electrochemical, hole-transporting and photovoltaic properties of these copolymers were investigated. Field effect results show that the copolymer PT-DTBTTPA containing TPA and DTBT in the side chain showed the highest hole mobility. The three copolymers exhibit deep-lying HOMO energy levels, which were effectively tuned by changing the side groups. Photovoltaic cells were fabricated with the synthesized copolymers as electron donors and [6,6]-phenyl-C-butyric acid methyl ester (PCBM) as the electron acceptor. Bulk heterojunction polymer solar cells based on PT-DTBT and PT-DTBTTPA showed promising power conversion efficiencies of 5.50% and 5.16%, respectively.

Graphical abstract: Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2012
Accepted
09 Sep 2012
First published
11 Sep 2012

J. Mater. Chem., 2012,22, 22913-22921

Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups

H. Li, H. Luo, Z. Cao, Z. Gu, P. Shen, B. Zhao, H. Chen, G. Yu and S. Tan, J. Mater. Chem., 2012, 22, 22913 DOI: 10.1039/C2JM33886F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements