Issue 23, 2012

Thermal responsive fluorescent block copolymer for intracellular temperature sensing

Abstract

In this study, a novel fluorescent and temperature responsive block copolymer has been designed and synthesized by a reversible addition–fragmentation chain transfer (RAFT) polymerization method in terms of the strategy that N-isopropylacrylamide (NIPAm), maleic anhydride (MAn) and 7-amino-4-methylcoumarin (AMC) act as the temperature responsive unit, the hydrophilic unit and the fluorescent unit, respectively. The successfully synthesized block copolymer was characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (1H NMR) spectroscopy. Meanwhile, the self-aggregation behaviour in aqueous solution and the thermo-responsive property of the block copolymer were demonstrated by particle size measurement, transmission electron microscopy (TEM) observations and lower critical solution temperature (LCST) determination, respectively. Then the variation of fluorescence intensity with temperature was confirmed. With increasing temperature, shrinking of PNIPAm chains caused the block copolymer to become more hydrophobic above the LCST, assembling larger aggregates with lower interfacial curvature. Thus a part of the fluorescent groups would be embedded inside the enlarged block copolymer micelles, resulting in lower fluorescence intensity. Furthermore, the superior hydrophilicity and biocompatibility of the block copolymer as a thermometer have been demonstrated by application in intracellular temperature sensing of MDCK cells ranging from 24 °C to 38 °C.

Graphical abstract: Thermal responsive fluorescent block copolymer for intracellular temperature sensing

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2012
Accepted
13 Apr 2012
First published
04 May 2012

J. Mater. Chem., 2012,22, 11543-11549

Thermal responsive fluorescent block copolymer for intracellular temperature sensing

J. Qiao, L. Qi, Y. Shen, L. Zhao, C. Qi, D. Shangguan, L. Mao and Y. Chen, J. Mater. Chem., 2012, 22, 11543 DOI: 10.1039/C2JM31093G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements