Issue 13, 2012

Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending

Abstract

Graphene is prepared from graphite by pressurized oxidation and multiplex reduction. The pressurized oxidation is advantageous in easy operation and size-control, and the multiplex reduction, based on ammonia and hydrazine, produces single-atom-thick graphene (0.4–0.6 nm thick) which can be directly observed by atomic force microscopy. A masterbatch strategy, which is feasible in “soluble” thermoplastic polymers, is developed to disperse graphene into poly(lactic acid) by melt blending. The graphene is well dispersed and the obtained nanocomposites present markedly improved crystallinity, rate of crystallization, mechanical properties, electrical conductivity and fire resistance. The properties are dependent on the dispersion and loading content of graphene, showing percolation threshold at 0.08 wt%. Graphene reinforces the nanocomposites but cuts down the interactions among the polymer matrix, which leads to reduced mechanical properties. Competition of the reinforcing and the reducing causes inflexions around the percolation threshold. The roles of the heat barrier and mass barrier effects of graphene in the thermal degradation and combustion properties of the nanocomposites are discussed and clarified.

Graphical abstract: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending

Article information

Article type
Paper
Submitted
28 Nov 2011
Accepted
16 Jan 2012
First published
15 Feb 2012

J. Mater. Chem., 2012,22, 6088-6096

Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending

C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, Y. Guo and Y. Hu, J. Mater. Chem., 2012, 22, 6088 DOI: 10.1039/C2JM16203B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements