Issue 19, 2012

The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property

Abstract

It is well known that electrides are a type of multielectron many-cage solid salt with excess electron anions inside the cages. The main concern regarding these structures is how to construct the organic single-caged electride molecules with an electron inside its cage. Using the perfluorinated fullerene cage C20F20 as the electron hole, the alkali metal atoms (M = Na, K) and superalkali atoms (M3O, M = Na, K) with a smaller vertical detachment energy (VDE) value as the source of the electrons, we can construct new nonlinear optical (NLO) organic single-caged electride salt molecules M+(e@C20F20) and (M3O)+(e@C20F20) due to the long-range charge transfer from the (super)alkali to inside the cage, forming an electron-hole pair within the molecule. To measure the nonlinear optical response, static first hyperpolarizabilities (β0) and the superalkali effect on β0 are exhibited for these new molecules. The β0 values are 400 and 600 au for M+(e@C20F20) which are considerably smaller than 13 000 and 10 000 au for (M3O)+(e@C20F20). It is revealed that the superalkali effect on the β0 value is dramatic and the β0 value increases by about 20–30 times. New single-caged superalkali electride salt molecules (M3O)+(e@C20F20) possess not only a large nonlinear optical property but also higher stability. They hold potential as high-performance nonlinear optical materials.

Graphical abstract: The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property

Article information

Article type
Paper
Submitted
24 Oct 2011
Accepted
19 Mar 2012
First published
05 Apr 2012

J. Mater. Chem., 2012,22, 9652-9657

The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property

J. Wang, Z. Zhou, Y. Bai, Z. Liu, Y. Li, D. Wu, W. Chen, Z. Li and C. Sun, J. Mater. Chem., 2012, 22, 9652 DOI: 10.1039/C2JM15405F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements