Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 48, 2011
Previous Article Next Article

Phase-selective synthesis of bornite nanoparticles

Author affiliations

Abstract

Nanoparticles of the copper iron sulfide phase bornite (ideally Cu5FeS4) have been synthesized phase selectively. Either the low or high bornite phase can be obtained through alteration of reactant ratios or reaction temperature, revealing a phase-selectivity that results from distinct rates of formation. The phase, shape, size, and composition of these novel nanomaterials are characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The light absorption behaviour was investigated using ultra-violet/visible/near-infrared spectroscopy (UV/vis/NIR), revealing direct band gaps that are phase-dependent (low bornite, Eg = 0.86 eV and high bornite, Eg = 1.25 eV). The band gap exhibited by high bornite nanoparticles lies in the range of optimal solar energy conversion efficiency for a single-junction photovoltaic, making it a potentially useful light absorber consisting of inexpensive, abundant elements. Lastly, the selective formation of bornite nanoparticles, as opposed to the copper sulphides, chalcocite (Cu2S) and digenite (Cu1.80S), or chalcopyrite (CuFeS2) is demonstrated, suggesting solid solution formation between bornite and digenite nanoparticles.

Graphical abstract: Phase-selective synthesis of bornite nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Aug 2011, accepted on 18 Oct 2011 and first published on 02 Nov 2011


Article type: Paper
DOI: 10.1039/C1JM13677A
Citation: J. Mater. Chem., 2011,21, 19286-19292

  •   Request permissions

    Phase-selective synthesis of bornite nanoparticles

    A. M. Wiltrout, N. J. Freymeyer, T. Machani, D. P. Rossi and K. E. Plass, J. Mater. Chem., 2011, 21, 19286
    DOI: 10.1039/C1JM13677A

Search articles by author

Spotlight

Advertisements