Issue 12, 2011

Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell

Abstract

We have studied two amphiphilic interfacial modifiers: low cost Cu phthalocyanine dye containing ether side chains (Cu–ph–ether dye) and a carboxylic acid- and bromine-terminated 3-hexyl thiophene oligomer (oligo-3HT-(Br)COOH, Mw ∼ 5K) to enhance the interfacial interaction between poly(3-hexyl thiophene) (P3HT) and TiO2 nanorods. A large improvement in the performance of fabricated solar cells was observed using these relatively large molecular modifiers when compared to pyridine-modified TiO2 nanorods. UV-vis spectroscopy and X-ray photoelectron spectroscopy analyses reveal that the modifiers are adsorbed and chemically bonded to TiO2 through unshared electrons associated with the modifiers. Furthermore, the new modifiers increased the hydrophobicity of TiO2 with the order of oligo-3HT-(Br)COOH > Cu–ph–ether dye > pyridine. Synchrotron X-ray spectroscopy studies of the modified hybrid films indicate the crystallinity of P3HT is increased, following the same trend as the hydrophobicity, because the new modifiers function as plasticizers, increasing the flow characteristics of the film. Moreover, the same trend is also observed for the reduced recombination rate and increased lifetime of charge carriers in the device by transient photo-voltage measurement. Thus, the oligo-3HT-(Br)COOH outperforms the Cu–ph–ether dye and pyridine in enhancing the power conversion efficiency (PCE, η) of the solar cell. More than a two-fold improvement is shown compared to pyridine. The results are due to the large size, conductivity, and polar characteristics of the oligo-3HT-(Br)COOH unit, which facilitates both the crystallization of P3HT and the electron transport of the TiO2 nanorods. This study provides a useful route for increasing the efficiency of hybrid solar cellsvia the enhancement of interfacial interactions between organic donors and inorganic acceptor materials.

Graphical abstract: Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell

Article information

Article type
Paper
Submitted
23 Oct 2010
Accepted
22 Dec 2010
First published
01 Feb 2011

J. Mater. Chem., 2011,21, 4450-4456

Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell

Y. Huang, J. Hsu, Y. Liao, W. Yen, S. Li, S. Lin, C. Chen and W. Su, J. Mater. Chem., 2011, 21, 4450 DOI: 10.1039/C0JM03615C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements